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By increase in density, impelled by pressure, the electronic energy
bands in dense hydrogen attain significant widths. Nevertheless,
arguments can be advanced suggesting that a physically consistent
description of the general consequences of this electronic structure
can still be constructed from interacting but state-dependent
multipoles. These reflect, in fact self-consistently, a disorder-in-
duced localization of electron states partially manifesting the
effects of proton dynamics; they retain very considerable spatial
inhomogeneity (as they certainly do in the molecular limit). This
description, which is valid provided that an overall energy gap has
not closed, leads at a mean-field level to the expected quadrupolar
coupling, but also for certain structures to the eventual emergence
of dipolar terms and their coupling when a state of broken charge
symmetry is developed. A simple Hamiltonian incorporating these
basic features then leads to a high-density, low-temperature phase
diagram that appears to be in substantial agreement with exper-
iment. In particular, it accounts for the fact that whereas the phase
I–II phase boundary has a significant isotope dependence, the
phase II–III boundary has very little.

A t low temperatures and ordinary pressure, crystalline hydro-
gen has a mean electronic density that exceeds the valence

electron density of all the alkali metals and even the alkaline earths
under equivalent conditions. However, it is a ground state insulator
retaining this physical characteristic at densities an entire order of
magnitude higher than its one atmosphere value. Under these
compressions application of band theory for rigorously static lattices
shows clearly that the electronic energy bands of hydrogen are
appreciably wide, indicating significant overlap between the stan-
dard orbitals invoked to describe the low density phases. Yet much
of the electronic charge remains well localized in the vicinity of a
Bohr radius from the protons, and there is evidence that the
currently accessible part of the low temperature, high density phase
diagram can still be understood in terms of interactions originating
with multipole expansions associated with effectively localized
states and a continuing preservation of the strongly inhomogeneous
character of the microscopic electron density �e

(1) (r). The deeper
understanding of this notion, and its consequences, constitutes the
bulk of what follows, but starting from an elementary observation
that a macroscopic neutral quantity of hydrogen is but a dual
Fermion assembly of electrons and protons, and that the dynamics
of the latter have considerable influence on the former.

The Dense Hydrogen Problem
The quantum mechanics of N(�1023) electrons in a uniform
compensating charged continuum of volume V is a well studied
problem, though debate still continues on the nature of its low
density states (especially in reduced dimensionality). If vc(r) � e2�r is
the fundamental Coulomb interaction, and if e�� � e(N�V) is the
corresponding rigid continuum charge density, then the Hamiltonian
for this system, to be taken as canonical and neutral overall, is

Ĥe � T̂e � V̂e, [1]

where for m � me (the electron mass)

T̂e � �
i�1

N

� � �2�2m��ie
2 [2]

and

V̂e �
1
2�

V

dr�
V

dr�vc�r � r����̂e
�2��r, r�� � 2�� �̂e

�2��r� � ��2	. [3]

Here the electron coordinates are {rei} in terms of which the
one-particle density operator (associated with electron–
background interactions in Eq. 3) is

�̂e
�1��r� � �

i�1

N

��r � rei�.

The electron–electron interactions in Eq. 3 are associated with
the two-particle density operator

�̂e
�2��r, r�� � �̂e

�1��r��̂e
�1��r�� � ��r � r���̂e

�1��r�. [4]

The ground states of Eq. 1, which has no explicit reference to
the spin of the electrons, include most notably the paramagnetic
Fermi liquid for which 
T̂e� � 
V̂e� is required, and for which

�e
�1��r� � 
�̂e

�1��r�� � constant � �� .

The fundamental constants in Eqs. 2 and 3 define a familiar
length �2�mee2 when m is taken as the electron mass, me. It is
the standard Bohr radius and it may be used to fix the density of
the system in terms of the dimensionless quantity rs defined by
(4��3)rs

3ao
3 � 1��� � V�N. For the Fermi liquid the condition


T̂e� � 
V̂e� is generally met when rs � 0(1). In what follows, it
is rs that will be taken as the measure defining the overall density.

Though Eq. 1 has considerable symmetry, there are broken
symmetry states at low density, where 
T̂e�  
V̂e�, the Wigner
crystal being a prominent example. For this case

�e
�1��r� � 
�̂e

�1��r�� � 
�̂e
�1��r � R��,

where {R} is the set of all vectors of a lattice. In order for the
electronic density to be periodic, it is not necessary that the
Wigner crystal be a Bravais lattice (1). In three dimensions it
appears (2) that to achieve crystalline states the values of rs need
to be greater than �40. Low densities also admit of the possi-
bility of magnetically ordered phases.

A problem with completely identical physical characteristics
(and with precisely the same Hamiltonian as in Eqs. 1–3) is
obtained if electrons (charge �e and mass m � me) are replaced
by protons (also Fermions but now with charge � e and mass
m � mp � 1,836me) with the sign of the background charge
density simply being reversed. For this system the fundamental
unit of length is ao�1,836, and it follows that if �� is so chosen that
the states of an electron system with this density are those of a
Fermi liquid then for the same �� the proton system is well into
the Wigner crystal regime.
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From these two familiar problems the Hamiltonian Ĥ describing
all phases of hydrogen is readily determined: Fix rs, or equivalently
a background density e��, and establish the electron problem, Ĥe.
For a background density �e��, now establish the proton problem,
Ĥp. Permit these two neutral systems to occupy a common volume
and then determine the mutual interactions Ĥep between them. On
canceling the backgrounds we clearly arrive at the initiating canon-
ical problem of N electrons and N protons (with mutual Coulomb
interactions), i.e., a macroscopic quantity of hydrogen in a volume
V. But in terms of the separate equivalent problems the Hamilto-
nian is also immediately seen to be

Ĥ � Ĥe � Ĥp � Ĥep, [5]

where

Ĥep � �
V

dr�
V

dr�vc�r � r����̂p
�1��r� � �����̂e

�1��r�� � ��� [6]

or equivalently

Ĥ � Ĥe � Ĥp � �1�V��
k�0

vc�k��̂e
�1��k��̂p

�1���k�, [7]

where in three dimensions vc(k) � 4�e2�k2 and

�̂�
�1��k� � �

i�1

N

exp�ik�r�i�.

The Hamiltonian represented by Eq. 5 has considerable symmetry,
and its form also leads to scaling relations for both the thermodynamic
and correlation functions (3). In what follows, physically relevant
densities for dense hydrogen will imply values of rs 	 1.35, correspond-
ing to the highest levels of densification achieved in recent experiments
(4,5). Under these conditions the coupling Ĥep remains far from small,
and as a consequence perturbation methods are required to proceed
beyond linear response (6).

Fig. 1 shows a limited region of the phase diagram representative
of dense hydrogen inferred from considerable experimental and
theoretical effort (7–17). Many of the structural characteristics of
dense hydrogen are summarized in recent reviews (14, 15) that
augment the earlier review by Silvera (18). The transition (for T �
0) at �150 GPa for both hydrogen and deuterium is notable, for it
corresponds to an increase in proton-pair polarization that is about
an order of magnitude greater than the phase II value (16). At this
transition there is also a discontinuous downshift (19) of the vibron
frequency (by �100 cm�1). The I–II and II–III transitions are both
reported to be first order; on the other hand, the I–III transition is
interpreted as first order up to a certain point on the phase line.
Beyond it both the nature and order of the transition remain to be
clarified. It may be noted that deuterium orders to phase II from
phase I at pressures considerably lower than those found for
hydrogen, an effect that can be attributed immediately to the larger
mass of deuterium and in consequence a lower rotational zero point
energy (see below). However, the fact that both for dense hydrogen
and dense deuterium (with double the mass) there is a prominent
transition at a near common density suggests strongly that its origin
is primarily electronic, and thus not significantly dependent on
center of mass motion of proton or deuteron pairs. This is central
to establishing an approximate analysis which focusses on electronic
structure which may well be influenced by the much lower energy
internal (especially rotational) dynamics. In what follows it will be
shown that these fundamental phase characteristics emerge from a
state-dependent multipole representation of the interactions asso-
ciated with Eq. 5, these self-consistently linked to charge localized
by disorder. The analysis is therefore carried out under the assump-

tion that translational zero-point energies change only in a relatively
minor way in the vicinity of phase boundaries that may otherwise
arise largely as a consequence of orderings of non-translational
degrees of freedom (see below).

A Multipole and Mean-Field Description
The large and extremely anharmonic excursions characteristic of
the protons in dense hydrogen effectively render the associated
electronic problem as one of motion of electrons in an environ-
ment with considerable instantaneous disorder. Unlike the
problem of electrons moving in an environment established by
phase coherent harmonic phonons, the electronic structure must
necessarily reflect significant incoherence of phase. Thus, in-
stead of a strict long-range coherence of electronic phase
normally required, for example, by the geometric phase ap-
proach to the determination of electronic polarizability in an
extended region (20), a localization by disorder is expected (21),
and it will be reinforced by correlation. As has been emphasized
by Kohn (22), when strong Coulomb interactions are present, a
macroscopic system exhibiting significant overlap of one-
electron orbitals can nevertheless possess insulating properties.
Even in periodic assemblies of such orbitals there can be
disconnectedness of the many-electron wave function, and as
noted the presence of disorder (21) can impel this further.

If the zero-point displacements of protons are taken as a
measure of departure from a crystalline environment (23), the
associated changes in local potential energy for electrons are
substantial. Moreover, in a systematic progression from average
site to average site, the changes are largely incoherent (and
almost completely random in phase I, the rotational phase). This
is readily appreciated by noting that the single-particle wave

Fig. 1. Summary of the approximate form of the phase structure of dense
hydrogen at relatively low temperatures. Phase I (also known as the low-pressure
phase)conformstothehexagonalclassof structuresand isaphasewhereangular
momentum remains a good quantum number. In phase II (or the broken sym-
metry phase) the structure is possibly Pa3, and the rotation is hindered but is
nevertheless of quite wide angle. In phase III (also called the HA phase) the
structure is predicted to be in the orthorhombic class and there is still wide-angle
libration, but unlike phase II there is also strong infrared activity linked to an
apparent permanent polarization of the 2e � 2p units.

4014 � www.pnas.org�cgi�doi�10.1073�pnas.0307331101 Edwards and Ashcroft
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function can be written in the form Cexp(i�(�r,t)), where the
general phase � becomes Hamilton’s principal function (W �
��) in the near classical limit. The momentum of a particle, �W,
and hence the trajectory, is orthogonal to surfaces of constant W.
Since the librational excursions already amount to a considerable
fraction of a radian (17), it follows that the classical paths must
be tortuous, and hence the phase changes between sites must also
be considerable. It also follows that although 
�̂p

(1)(r)� is periodic,
the requisite average is clearly over proton time scales; on
electronic time scales the problem presented embodies one of
considerable disorder, as noted. Now add to this the additional
disorder expected when densities are such that proton exchange
accompanying tunneling ensues (24). The possibility of extend-
ing the notion of localization-by-disorder of electrons to quite
considerable densities also then ensues.

In an independent electron picture the problem can therefore
be viewed as one admitting of disorder that is principally
site-diagonal, and this can lead to localized states separated from
itinerant by a mobility edge (21). The envelopes of the states,
considered localized, will decay exponentially and will not
conform to the Bloch character expected for states in a truly
periodic system. On restoring interactions in the many-electron
problem disconnectedness is expected in the wave function and
because of this (and in spite of a relatively wide spectrum of
electron states) it suggests that a continued multipole expansion
approach may be valid. However, the incoherence of proton
motion necessarily implies a site dependence of the coefficients
of such an expansion, and in a first approximation this will be
averaged out. The essential difference from the one atmosphere
or low density situation is that the associated expansion coeffi-
cients must also acquire through this averaging a state depen-
dence, most prominently upon density if temperatures are low.
As will be seen below, this viewpoint is largely corroborated by
the molecular-field argument to follow, which will be seen to
reasonably well reproduce the key experimental features of the
phase II–phase III fragment of the phase diagram.

The suggestion put forth in ref. 17 on the possible appearance of
a charge ordered broken symmetry crystalline state were based on
the results of ab initio density functional calculations, but restricted
to the ground state and to static protons. For the dynamic case the
notion of the development of charge asymmetry is being extended
in an average sense to the localized charge. We may also progress
to a somewhat wider region of the phase diagram depicted in Fig.
1 using the mean-field approach and the same hypothesis of
electronic charge localized by disorder within appropriate bound-
aries; further, we can also examine the isotopic dependence of these
phase boundaries of particular interest is the region of confluence
of the lines separating phases I, II, and III (near the triple point).

Vibron and libron timescales differ by about an order of
magnitude, so the primary assumption being made is equivalent
to the assertion that the fast (vibron) degrees of freedom have
been traced out in pursuit of an effective Hamiltonian governing
the motion of the slower degrees of freedom (rotational or
libron). Under conditions where the phases are close to conflu-
ence, the acoustic phonons have frequencies which, in large
measure, are also in excess of the libron frequencies. A similar
argument can therefore be made for these though with somewhat
less force. On the basis of the foregoing the requisite Hamilto-
nian is then argued to have a largely multipole character, and its
form follows from first taking an electronic trace of the funda-
mental Hamiltonian Eq. 5 or Eq. 7. For much of the phase
diagram of Fig. 1, experiment has certainly established that the
electronic trace of Eq. 5 leads to a state that can be described as
quite weakly coupled ‘‘molecules,’’ these assuredly leading to at
least quadrupolar coupling. More accurately these four-particle
(2e � 2p) units have correspondingly well defined internal
physics resulting, for example, in an anisotropic polarizability.

In a frame in which the proton-pair axis is aligned along ẑ the
polarizability tensor has component �xx � �yy � �� and �zz � �� (the
others vanishing by symmetry). To set a scale, for the free molecule
�� � 6.76ao

3 and �� � 4.74ao
3; for later use it is important to note

that �� significantly exceeds the average polarizability 
↔�� � 5.6ao
3.

Accordingly, we might reasonably begin with a lattice of effective
molecules that interact primarily through quadrupolar terms. How-
ever, as noted the analysis of ref. 17 predicts that beyond a certain
density, and for certain structures, hydrogen can adopt a state of
spontaneous polarization, and in treating an electronic trace of Eq.
5 we must necessarily permit the possibility of emerging dipolar
interactions as indicated above; these are also expected be signif-
icant functions of state, here mainly of density.

To establish a mean-field Hamiltonian for quadrupolar (and
eventually also dipolar) interactions, we therefore first invoke an
adiabatic separation of time scales and for instantaneously fixed
proton coordinates we take the electronic trace of Eq. 5, the result
being used as a Hamiltonian to determine the succeeding proton
motion. Two very different physical situations can be imagined
according to choice of density (rs); first, that the electron trace is
carried out over states with no symmetry breaking (the familiar
quadrupolar case at lowest order). The second, and here the notion
of a time average location (the minimizing ‘‘structure’’) of the
protons is crucial, arises from a trace over electronic states that
display a time average broken symmetry, to be associated with a
spontaneous polarization and hence to the appearance of dipolar
terms. Accordingly, let an emerging dipole moment be denoted by
d̂i and let Qi be the � � 2, m � 0 component of the permanent
quadrupole moment. The entire instantaneous assembly {↔Qi}, {d̂i}
of quadrupoles and dipoles must obviously give rise to a site-
dependent field. In the language of mean-field theory a single
proton pair can be said to find itself in an average field E(
↔Qi�, 
�di�)
arising from all other proton pairs, i. Given this, a straight-forward
approach immediately suggests itself; we simply determine the
requisite averages 


↔Q�, and 
�d� for the chosen pair from statistical
mechanics, these contributing to the determination of the mean-
field itself, and then iterate the procedure to self-consistency.

It is unnecessary to assume that all dipoles have identical
directions of polarization. However, we do assume that all pairs
possess identical magnitudes of polarization, this being consistent
with symmetry constraints imposed by the crystalline spatial struc-
ture. In ref. 17, two structures (c2�m and cmc21) were found to give
rise to spontaneous polarization. Two other structures, p21�c and
pca21, also permit spontaneous polarization (12, 14) where pairs
may be found in symmetrically related sites of the unit cell. The
corresponding polarizations are also then related by symmetry and
are equivalent in magnitude. For specified periodic lattices of
dipoles of identical magnitudes the field at a given site can be
determined, as is well known (25). In general this field need not be
parallel to the chosen molecular axis; indeed, it is even possible for
it to be antiparallel to the assumed net direction of polarization.
However, configurations for which the field constructively rein-
forces the polarization have been found to be energetically most
favorable in the hydrogen problem, and these will be assumed here.

Low Temperature and High Pressure Phases
Given that the scale of density is being represented by the linear
measure rs, it follows that quadrupole–quadrupole energies will scale as
rs
�5, dipole–dipole as rs

�3, and quadrupole–dipole (and dipole–
quadrupole) as rs

�4. If L̂ is the angular momentum operator for a
proton pair with principal moment of inertia I, then within the
effective molecule picture (and to within volume dependent terms
largely originating with the electronic Hamiltonian) the reduced
Hamiltonian we consider is now readily seen to be

Ĥ � L̂2�2I � � �Eq�q�rs
5�
 Q

↔
�Q̂ � �E �dd�rs

3�
d̂�d̂ � �Eq�d�rs
4�
Q

↔
�d̂

� �E�dq�rs
4�
d̂�Q

↔
� d�

2�2�� � d�
2 �2��. [8]
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Observe that the symmetry of Eq. 8 is strictly appropriate only
for structures in which any ensuing order possesses an axis of
threefold symmetry through the pairs; examples are hcp-c,
where pair axes are aligned along the c axis, and Pa3. A lowering
of the corresponding symmetries introduces additional axial
anisotropy in a way that the components Qxx and Qyy of the
quadrupolar tensor may no longer be strictly equal. This can lead
to further nonvanishing components 


↔Q2,m� (m � �2) that may
favor additional axial anisotropy in the eventual ordering. In the
context of the mean field treatment that now follows, the effects
of these will be taken to be subsumed in the mean field itself, but
it should be noted that the Landau free energy that corresponds
to Eq. 8 possesses terms of all orders (including third) even when
the higher symmetry is incorporated.

The values of the state-dependent couplings Eq�q, Ed�d, Ed�q, and
Eq�d will initially be taken in a range reasonably close to those
appropriate to the free molecule values of the quadrupole moment
and polarizabilities, and the respective couplings between them are
those expected from classical interacting multipoles. A large neg-
ative value for Eq�q clearly implies that the quadrupolar couplings
will strongly favor orientational ordering (
↔Q� � 0) along some
assumed direction. On the other hand, the setting of Eq�d � 0 will
certainly indicate that the quadrupole field at a lattice site vanishes,
something which will automatically follow if the center of the proton
pair coincides with a site possessing inversion symmetry. If the pairs
should eventually be polarized then there is an irreducible energy
cost to establish them and this must be recouped from the long-
range energy in any eventual stable state of spontaneous polariza-
tion (25). The last two terms in Eq. 8 represent this energy penalty
(here d� and d� are simply the components of the emerging dipole
moment parallel and perpendicular to the pair axis, respectively). If
E is the local field at a given pair (here interpreted as the mean field)
then with sufficient accuracy we may take d̂ as given by linear
response (d̂ �↔��E). As a consequence it follows that for an arbitrary
orientation of a given pair with respect to E we may first solve for
d̂ in a frame in which ↔� is diagonal and then simply rotate back to
the frame in which E is along ẑ. For E � Eoẑ this gives

d̂ � Eo���� � ��� cos 
 sin� cos�,

��� � ��� sin 
 sin � cos �, �� cos2 � � �� sin2 �}, [9]

where � and 
 define the orientation of the dipole with respect to
the field. It is clear that if long range dipole–dipole interaction
energies attain levels exceeding the penalty of forming a dipole (of
order d2�2�), then it is obligatory to go beyond linear response (for
otherwise the dipoles themselves can diverge). Given the symmetry
of this problem, the next term in energy cost will be of the form
(b�4)d4 so that the energy of a polarizable pair in a local field E is
now �E�d̂�d2�2� � (b�4)d4. We have found that the results for
spontaneous polarization are not sensitive to b; an increase in b by
a factor n leads to a decrease in d by only a factor of 1�n1�4, for
constant energy cost.

We are evidently drawn towards structures in which pairs align
along the direction of E and for which both dipolar and quadrupolar
interactions act constructively. Other arrangements are certainly
possible but in energetic terms less favorable, and they do not
correspond to the structures found by ab initio methods at low
temperatures (12–14). In a frame in which a pair aligns, the
expectation value of the Cartesian quadrupole moment tensor is
diagonal; it follows that 
Y2,�1� � 0. Since the x̂ and ŷ components
of d̂ in Eq. 3 are sums of Y2,�1, only the ẑ component possesses a
nonvanishing expectation value. Accordingly we may now write


d̂� � Eo�0, 0, ��
cos2 �� � ��
sin2 ��	 [10]

in place of Eq. 9; here, sin2 � � (2�3)[1 � 4��5Y2,0]. Given this
we can immediately solve for 
d̂� when a trial pair wave function
is specified for the requisite averages in Eq. 8.

The states of Eq. 8 are readily obtained by adopting for such a
trial wave function a linear combination of spherical harmonics.
This approach has been successfully used for other quantum rotor
systems, for example, diatomic solids and solid methane, and it has
also been applied to the ground state of solid hydrogen (26–32) at
lower pressures. We therefore proceed with an initial specification
of the field parameters Eq�q, Ed�d, Ed�q, and Eq�d, all of which eventually
depend on the structure, and of the density rs (which for a given
temperature may be converted via the equation of state to a
pressure p). The Hamiltonian Eq. 8 is then diagonalized using a
basis set {Y�m}, for a given choice of �max. The choice of even values
for �max, corresponding to para-H2 or ortho-D2 has a significant
effect on the transition between phases I and II, but in fact rather
little effect on the transition between phases II and III; here we shall
illustrate the procedures with H2. The choice �max � 2 give results
that already differ very little from the choice �max � 4 when
conditions close to the order-to-disorder transition are specified
(where 


↔Q� is also already small).
Once the Hamiltonian Eq. 8 is diagonalized and the corre-

sponding states are obtained, an average order parameter, for
example 


↔Q�, is easily found at a given temperature according to
the standard canonical prescription


 Q
↔

� � Tr� Q
↔

e�Ĥ��BT��Tr�e�Ĥ��BT�,

and then 
d̂�, also now a function of temperature for a given
density, follows immediately from Eq. 10. This leads to a new
value of the mean field and hence to a new Hamiltonian (8). For
a given rs and T the entire procedure is then iterated to
self-consistency as noted above (and in practice the procedure is
rapid). The state eventually arrived at could in principle be
metastable, and to ensure that it is not, the procedure must be
repeated with initial choices of 


↔Q� and 
d̂� both set equal to zero,
and also to values greater than zero (four possibilities) with a
comparison then being made of the corresponding free energies.
For most of the region of the phase diagram to be presented the
states are by this means determined to be stable.

Some features of the approach just described bear a resemblance
to treatments of the classical Maier–Saupe model for classical
quadrupolar ordering (33, 34) as has already been noted by Mazin
et al. (35); the difference here is that the quadrupoles may also be
coupled to an effective spin-1 Ising model (36) (and, of course, the
approach clearly proceeds from quantum mechanics). The method
followed above is actually more complex, because two orderings are
coupled (those corresponding to d̂ and to ↔Q). Nevertheless the
similarities do suggest distinct possibilities for the emergent phase
diagram of dense hydrogen. When coupling to external fields are
present (an interesting experimental point in principle for what
follows) the transition can become continuous (33).

A term equivalent to an external field can physically arise if the
proton pairs undergo a transition to a state of self-sustaining
polarization, as both experiments and theories suggest. Should this
be the case then they can be taken to establish an effective
‘‘external’’ field (16) for a system of quantum quadrupoles. In fact,
this may not actually occur in hydrogen, the physical reason being
traced to the considerable anisotropy of the proton-pair polariz-
ability alluded to earlier. Because of this it becomes far more
difficult to polarize hydrogen when the pairs are not orientationally
ordered. The polarizing field is required to be much smaller simply
because the average polarizability (↔�) is significantly lower than ��.
When the pairs orientationally order, the field required to polarize
them can then be considerably weaker and they can more easily
polarize in a self-sustaining manner. Given this it is expected that

4016 � www.pnas.org�cgi�doi�10.1073�pnas.0307331101 Edwards and Ashcroft
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the transition to orientational order (
↔Q� � 0) will remain first
order, though perhaps not prominently.

The phase diagram for the spin-1 Ising model is quite complex;
it is expected that the phase diagram for Hamiltonian Eq. 8 may also
exhibit a similar richness of detail. For the dipolar terms in Eq. 8 the
cost of forming the dipoles is initially proportional to at least d2, as
already noted. In phase III this is self consistently compensated by
the aggregate of long-range dipole–dipole interactions, and also the
coupling of the dipoles to the quadrupole fields when 


↔Q� � 0. As
stated earlier, the range of parameters (Eq�q, etc.) is limited to values
typical for hydrogen under the conditions of compression appro-
priate to Fig. 1.

Results and Isotopic Dependence
Experimentally there are significant isotope effects; for example, D2
orders from phase I to phase II at a notably lower pressure than
does H2, and this may be traced in part to the larger mass leading
to a lower orientational zero-point energy in Eq. 8. In addition,
within a few GPa the low temperature transition from phase II to
phase III occurs at p � 150 GPa for both H2 and D2. Put another
way, for dense hydrogen and deuterium, whose dynamics differ
considerably, this transition is nevertheless occurring at essentially
the same densities. Finally, the (2e � 2p) units appear ordered (
↔Q�
� 0) in both phase II and phase III, but the experimental evidence
suggests a far higher (and state dependent) degree of polarization
in phase III. Finally, it appears from the measurements that the
transitions may be first order.

A very plausible possibility now arises given the form of Eq. 8: it
is that in both phase II and phase III the basic underlying config-
urations of the proton pairs are physically similar and that, as
adduced above, the transition to phase III represents a fundamental
change in electronic order, one that is being manifested by the presence
of state-dependent average dipoles. In classical terms the transition
takes place at a density where for a favorable structure the aggregate
of the dipole–dipole interactions become sufficient to account for
the �d2�2� penalty (here d is a characteristic dipole moment and
� is now an average polarizability). For this to happen, Eq�q must be
sufficiently large (and negative) to account for the quadrupolar
ordering, and Ed�d must also be sufficiently large in order that the
molecules may self-consistently polarize. The term Eq�d may or may
not be zero, indicating thereby whether (or not) there is a quad-
rupole field weakly polarizing the molecules in phase II.

First, take Eq�d � 0. For this case, the molecules participate in a
first-order transition, as expected, and in fact no polarization is
found in phase II (23). But as noted, if the density is increased
sufficiently the molecules may indeed self-consistently polarize,
leading to a large increase in 
d̂�; this is found. The change in
polarization, though sharp, is continuous (23). The parameters used
in this calculation are (all units are atomic, e.g. e2�ao � 27.2 eV)
Eq�q � �0.155, Eq�d � 0, Ed�d � 0.5, and Ed�q � 0, choices that lead
to strong quadrupole–quadrupole and dipole–dipole ordering.
Although this model does not agree with observation (for as noted,
the transition to phase III appears to be first order), it may be
mentioned that it does give qualitative agreement with the I–II
phase boundary, particularly the observed isotope dependence.
This behavior simply reflects quadrupole ordering and it implies
that quadrupole ordering alone actually does provide a reasonably
semiquantitative explanation for the I–II phase boundary. Refer-
ring to Fig. 2, it can be seen that the transitions for both isotopes are
actually first order at this level.

Second, consider the case Eq�d � 0. For small values of Eq�d, it
is found that the molecules can self-consistently order in a
first-order transition, and actually the results are quite similar to
those presented above, but with the anticipated difference that
there is now a weak polarization arising from coupling to a
quadrupolar field in phase II. The transition to the polarized
state (phase III) is continuous but once again, this model does
not completely agree with observation. Of the two, the choice,

Eq�d � 0 gives better agreement in that weak polarization is
certainly observed in phase II.

Accordingly, we eventually are led to a model in which the
quadrupole–quadrupole coupling is weaker than proposed above,
but the dipole–dipole coupling is stronger. This can result in just a
single phase transition, but both 


↔Q� and 
d̂� proceed from zero to
nonzero across the same phase boundary. That is, the molecules
order orientationally but as they do they simultaneously polarize;
this correspondence arises from the difficulty (referred to above) in
self-consistently polarizing the molecules when they are disordered.
But once they order, this difficulty is obviated and a confluence of
ordering and polarization may occur. Here both 


↔Q� and 
d̂�
transitions are first order, quite in agreement with experiment. The
parameters in this calculation are Eq�q � �0.062, Ed�q � 0, Ed�d �
�0.65, and Eq�d � 0, and the difference in densities for the two
isotopes is actually much smaller than observed in pure quadrupolar
ordering (23). Since the polarization (at densities at which self-
consistent polarization is energetically favorable for ordered sys-
tems, but not disordered) helps to drive the ordering, it is clear that
this electronic contribution is crucial to the experimental similarity
in the densities of the II–III phase boundary in hydrogen and
deuterium. It therefore cannot be inferred that quadrupoles alone
can impel the ordering.

These results suggest that phases II and III may represent two
different underlying molecular structures, with phase II assuming a
structure very favorable to quadrupolar ordering (such as p21�c)
and phase III then being very favorable to self-consistent polariza-
tion (such as c2�m). It is not necessary that the II–III boundary
represent exactly the situation illustrated above in which 


↔Q� and 
d�
order at precisely the same density in the structure representing
phase III. So long as spontaneous polarization in a structure B
occurs at a density less than the density of the transition to phase
III, but spontaneous polarization in a structure A only occurs at
densities greater than that of the transition, then there will be a
discontinuous increase in 
d� at the transition from A to B at such
a density (the system will go from a situation in which spontaneous
polarization is not energetically favorable to one in which it is, not
just by increase in density, but by changing structure).

A phase diagram for H2, with two structures, one with very
strong quadrupolar ordering (Eq�q � �0.155) and one with
significant quadrupolar ordering (Eq�q � �0.127) and strong
dipolar interactions (Ed� d � �0.548), is shown in Fig. 3. The

Fig. 2. Phase diagram corresponding to Eq�q � 0.155 and all other field param-
eters set to zero. This purely quadrupolar ordering is already in reasonable
agreement with the phase I–phase II boundary.
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circles indicate the first-order orientational transition in the
system with stronger quadrupolar interactions, which orders at
lower pressure but does not polarize (
Q� � 0, 
d� � 0). To the
right of the x’s the system is ordered and polarized, in a structure
which very strongly favors dipolar interactions. The phase line
(represented by the crosses) is also first order. This phase
diagram is in very reasonable agreement with respect to its form
when compared with the experimental phase diagram of H2.
Where the two phase lines meet there will be a triple point. All
of the transitions are first order, so that within this model there
is no tricritical point.

Conclusions
The physical picture that emerges from this approach can be
summarized as follows. Phase I represents an orientationally
disordered phase within the hexagonal class of structures, as is
known. The transition to phase II is well described by an
orientational-ordering transition, driven by quadrupole–
quadrupole interactions in (8). The structure in phase II is thus

likely to be very favorable to quadrupolar interactions; Pa3 and
Pca21 emerge as possible candidates. Pca21 is among the
lowest-energy structures found by ab initio calculations for static
lattices in the density region corresponding to phase II, so that
these calculations and the mean-field analysis above are in
agreement. The shape of the phase diagram indicates that the
transition to phase III is described by a transition to a sponta-
neously polarized state, and it is crucial to reemphasize that the
transition not only leads to polarization, but is in fact partially
driven by polarization. The largely electronic character of this
transition helps to explain the near lack of isotope dependence
of the transition to phase III from phase II. The antiferroelectric
structure c2�m found by using ab initio methods is also quite
favorable to spontaneous polarization (the dipole–dipole cou-
pling is again very strong). Thus the progression suggested by
these results is that phase I–phase II–phase III corresponds to
hcp (orientationally disordered) �Pca21 � c2�m. Though the
detailed shapes of the phase boundaries determined in the above
can clearly be improved, the general agreement they bear to the
experimental boundaries suggests that this underlying physical
picture has some validity. Experimental determination of the
actual structure of phase III would benefit these calculations
considerably, particularly in the final assignment of parameters.

Eventually the picture presented here must break down upon
sufficient increase in density, the expected closure of the gap
signalling one obvious limit. An important guide to the persis-
tence of the multipole character of the charge distribution can
certainly be gained by further experimental pursuit of the
infrared activity in phase III. In particular, such studies may have
much to say about the tunneling phase discussed above, which
may well presage the onset of a pressure induced ground-state
liquid (37, 38). The physical expectation has long been that the
paired structure will give way to a monatomic system at suffi-
ciently high densification en passant an insulator to metal
transition. Close to pair destruction vibrational�continuum
Feshbach resonances may be expected, and in the metallic state
that has formed, the consequences of these on the electronic
pairing problem (and consequent high temperature supercon-
ductivity) may be very considerable indeed (N.W.A., unpub-
lished work).
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